MANAGEMENT OF REFRACTORY THYROID CANCER

RAJKUMAR VENKATRAMANI, MD, MS
RARE TUMORS PROGRAM
TEXAS CHILDREN’S HOSPITAL
CONFLICTS OF INTEREST

Policies and standards of the Texas Medical Association, the Accreditation Council for Continuing Medical Education, and the American Medical Association require that speakers and planners for continuing medical education activities disclose any relevant financial relationships they may have with any entity producing, marketing, re-selling, or distributing health care goods or services consumed by, or used on, patients whose products, devices or services may be discussed in the content of the CME activity.

The planners and speakers have no relevant relationships to disclose.

I will be discussing off-label use of medications.
THROID CANCER- OVERVIEW

Estimated New Cases in 2015: 62,450
% of All New Cancer Cases: 3.8%

Estimated Deaths in 2015: 1,950
% of All Cancer Deaths: 0.3%

Percent Surviving 5 Years: 97.9%
2005-2011

SEER Stat Fact Sheets: Thyroid Cancer
INCIDENCE IN CHILDREN

Figure. Trends in age-standardized incidence rates of differentiated thyroid carcinoma in children, adolescents, and young adults (SEER 9, 1984-2010).

David A. Siegel et al. Pediatrics 2014;134:e945-e955
INCIDENCE VERSUS MORTALITY

Ahn et al. NEJM 2014
CLINICAL SITUATIONS

• Development of thyroid nodules/cancer in childhood cancer survivors
• Consult for patients with refractory thyroid cancer
HODGKIN LYMPHOMA AND DTC

28 cases in 1981 patients after a median follow-up of 14 years

9.2 fold increase in thyroid cancer risk

Age< 20 years and female sex were the significant risk factors
MIBG THERAPY AND DTC

Survivors
N=16

No Thyroid abnormalities
N=3

Thyroid Abnormalities
N=13

TE
N=4

TE & Thyroid Nodule
N=4

Thyroid Nodule
N=5

Thyroid Carcinoma
N=2

MEDIAN FOLLOW-UP 15.5 YEARS

PTEN AND THYROID NODULES

Table 1 Clinical findings and youngest age of diagnosis in 34 children with molecularly diagnosed PTEN hamartoma tumour syndrome (PHTS)

<table>
<thead>
<tr>
<th>Clinical finding</th>
<th>Proportion* (%)</th>
<th>Youngest documented age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrocephaly</td>
<td>27/27 (100)</td>
<td>13 months</td>
</tr>
<tr>
<td>ASD</td>
<td>7/7 (100)</td>
<td>2 years 2 months</td>
</tr>
<tr>
<td>DDMD</td>
<td>23/25 (92)</td>
<td>UNK</td>
</tr>
<tr>
<td>Pigmented penile macules (males)</td>
<td>19/19 (100)</td>
<td>2 years 5 months</td>
</tr>
<tr>
<td>Gastrointestinal polyps</td>
<td>9/12 (75)</td>
<td>2 years 10 months</td>
</tr>
<tr>
<td>Vascular anomaly†</td>
<td>16/34 (47)</td>
<td>Birth</td>
</tr>
<tr>
<td>Cutaneous lipoma(s)</td>
<td>12/31 (39)</td>
<td>Birth</td>
</tr>
<tr>
<td>Thyroid nodule(s)</td>
<td>10/18 (56)</td>
<td>5 years</td>
</tr>
<tr>
<td>Thyroid carcinoma</td>
<td>4/34 (12)</td>
<td>7 years</td>
</tr>
<tr>
<td>All tumours‡</td>
<td>7/34 (21)</td>
<td>7 years</td>
</tr>
</tbody>
</table>

DICER 1 AND DTC

Table 1. Summary of Cases of Thyroid Carcinoma Arising in Patients With PPB and/or a Germline DICER1 Mutation

<table>
<thead>
<tr>
<th>Case</th>
<th>Diagnosis</th>
<th>Germline DICER1 Status</th>
<th>Somatic DICER1 Status in Thyroid Carcinoma</th>
<th>Other DICER1-Associated Lesions</th>
<th>Family History of Thyroid Disease</th>
<th>HDC</th>
<th>Bone Marrow Transplantation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Follicular variant papillary thyroid carcinoma</td>
<td>Positive: c.3505dupT</td>
<td>Positive: c.5439G→T</td>
<td>PPB, PPB metastasis</td>
<td>Mother: hypothyroidism</td>
<td>Yes</td>
<td>Autologous peripheral blood stem cell transplantation</td>
<td>Case 1 (this report); Shin et al (13)</td>
</tr>
<tr>
<td>2</td>
<td>Follicular variant papillary thyroid carcinoma</td>
<td>Positive: c.3579_3580delCA<sup>a</sup></td>
<td>Positive: c.5438A→G</td>
<td>PPB, CBME</td>
<td>Unknown</td>
<td>Yes</td>
<td>No</td>
<td>Case 2 (this report); Slade et al (4)<sup>b</sup></td>
</tr>
<tr>
<td>3</td>
<td>Bilateral papillary thyroid carcinoma</td>
<td>Positive: c.2379T→G</td>
<td>Positive: c.5113G→A</td>
<td>PPB, CN</td>
<td>Unconfirmed</td>
<td>Yes</td>
<td>No</td>
<td>Case 3 (this report)</td>
</tr>
<tr>
<td>4</td>
<td>Follicular thyroid carcinoma</td>
<td>Unknown</td>
<td>Unknown</td>
<td>PPB</td>
<td>Mother: thyroid adenoma</td>
<td>Yes</td>
<td>Double Auto-BMT</td>
<td>Que et al (17)</td>
</tr>
<tr>
<td>5</td>
<td>Follicular thyroid carcinoma</td>
<td>Unknown</td>
<td>Unknown</td>
<td>PPB, cERMS, bladder RMS, MNG</td>
<td>Unknown</td>
<td>Yes</td>
<td>Autologous peripheral blood stem cell transplantation</td>
<td>Rome et al (21)</td>
</tr>
</tbody>
</table>

MOLECULAR PATHOGENESIS OF THYROID CANCER

BRAF V600E MUTATION PEDIATRIC STUDIES

<table>
<thead>
<tr>
<th>Author</th>
<th>Number of patients</th>
<th>Method</th>
<th>% of BRAF</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henke 2014</td>
<td>27</td>
<td>RFLP</td>
<td>63%</td>
<td>No correlation with outcome</td>
</tr>
<tr>
<td>Givens 2014</td>
<td>19</td>
<td>Pyrosequencing</td>
<td>37%</td>
<td>No correlation with aggressive behavior</td>
</tr>
<tr>
<td>Ballester 2015</td>
<td>27</td>
<td>NGS mutation panel</td>
<td>37%</td>
<td>RET fusions- 22% CTNNB1- 3%</td>
</tr>
<tr>
<td>Picarsic 2015</td>
<td>18</td>
<td>7-gene mutation panel, NGS ThyroSeq V2</td>
<td>17%</td>
<td>ETV6/NTRK3 fusion-3 TPR/NTRK1 fusion -1 RET fusions-3 PAXC8/PPARg -1</td>
</tr>
</tbody>
</table>

TARGETED THERAPIES FOR THYROID CANCER
FDA APPROVED MEDICATIONS

• Chemotherapy:
 – Doxorubicin (not used)

• Oral Tyrosine Kinase Inhibitors:
 – DTC
 • Sorafenib (2013)
 • Lenvatinib (2015)
 – MTC
 • Vandetanib (2011)
 • Cabozantinib (2012)
COMPLETED PHASE II TRIALS - DTC

- Axitinib
- Geftinib
- Motesanib
- Pazopanib
- Selumetinib
- Sunitinib
- Vandetanib
- Vemurafenib (currently in phase III)
INDICATIONS FOR MEDICAL THERAPY

• Radiorefractory differentiated thyroid cancer with evidence of clinically significant disease progression

DECISION TRIAL - SORAFENIB

Brose et al. The Lancet 2014; 384: 319-328

PR- 12%
SD – 42%
Tumor shrinkage – 88%
LENVATINIB MECHANISM OF ACTION

http://dx.doi.org/10.2147/BTT.S39381
SELECT TRIAL - LENVATINIB

PR - 63%
SD – 15%
Tumor shrinkage – 98.6%

SORAFENIB IN A 14 YEAR OLD WITH PTC

Waguespack et al, Thyroid 2009: 19; 407-411
SORAFENIB IN A 8-YEAR OLD WITH PTC

BASELINE

AFTER 52 DAYS

Iyer et al. THYROID Volume 24, Number 1, 2014
SORAFENIB IN A 14 YEAR OLD WITH PTC
PRE-SORAFENIB

POST-SORAFENIB
THYROGLOBULIN TREND

5 MONTHS ON SORAFENIB
CONCLUSION

• The MAP kinase pathway and PI3K-AKT pathway play a key role in the development of thyroid cancer.

• Majority of patients have excellent outcomes with surgery and RAI treatment

• In the few patients refractory to radio-iodine and progressive disease, tyrosine kinase inhibitors may be indicated.

• TKI inhibitors in children should ideally be administered as part of a clinical trial, and in consultation with our adult colleagues.
Rare Tumors Program
Texas Children’s Hospital
Email: raretumors@txch.org